Seeking A Friend For The End Of The World


I sometimes run across news that I find depressing, and this last week or so I seem to have come across a whole string of such stories with regard to energy use. It seems sometimes like any hope of a sustainable future is on the verge of being overcome by the growth and momentum of the system. Thus, the bit of hyperbole in this post’s title, and my original intent to write about this gloomy side to humankind’s precarious situation, or at least about how we need to step up our efforts. I was thinking that perhaps we are indeed like characters in a disaster movie where an asteroid is set to destroy the planet, and we should all just accept it, concentrate on enjoying our last days, and just quit worrying about renewable power, permaculture, recycling, and adopting more sustainable lifestyles.

But, as I set out to bolster my negativism with facts, I ended up with a more-nuanced thesis. On the whole, it might not be as bad as I thought. Much of the info that gave me this perspective comes from a research company called Enerdata, a large and seemingly well-respected European research company, and, more specifically, their online interactive “Yearbook” about worldwide energy production and use. It’s a fascinating site.

So how are we doing, when you look at the actual numbers about energy? Here’s my admittedly-rough impression of their data, from 1990 to present, a period of almost a quarter of a century. I’ll include links to the graphs, so you can judge for yourself.

Crude oil production— Over the last quarter century, not much change. A slight upward trend from 3,000 megatons to about 4,000 megatons overall, but roughly flat for the last decade, with no visible “peak”, and no dramatic hockey-stick-like exponential growth. On the whole, it doesn’t appear out of control in any way (other than the fact that we’re still burning an awful lot of oil).

oil platform south thailand

Oil and gas production south of Thailand.

Natural gas production— A steady increase in production, from about 3,000 bcm (billion cubic meters) to about 3,500 bcm. The recent boom in U.S. production isn’t overly visible on the graph. From the point of view of sustainability, there could be worse news—burning natural gas creates only about half the CO2 emissions than burning coal does.

Electricity production— Like oil, a steady increase, from about 10,000 twh (terrawatt hours) to about 20,000 twh over the 23-year period, with perhaps even a slight leveling-off as of late. Like oil, it doesn’t appear that growth is out of control. In all of these cases, growth appears linear rather than exponential, and, in the case of oil and electricity, might even be tapering off a bit.

Coal production— Flat until about 2002, then steady uptick from about 4,500 mt to about 7,500 mt today. Most of this was due to increased consumption in China, BUT—the sub-heading on this page reads “Sharp slowdown in global growth mainly due to the slackening pace in China”. This graph isn’t great news for the planet, but again, the growth doesn’t look exponential.

All of these are just portions of the world’s total energy production, (and this graph isn’t just a compilation of the previous graphs, because some of the fossil fuels are used to make the electricity) which shows steady growth from about 8,000 Mtoe (million tons of oil equivalent) to about 13,000 Mtoe.

But, what of renewable generation? The proportion of electricity from renewable sources has been steady as a percentage of total production over the entire period. At first glance this makes it look like we aren’t making progress, but when you take into account that electricity production has gone up 10,000 twh’s, math dictates that the sum total of the increase in renewable generation has been tremendous. (Hydroelectric power is included in these numbers). We aren’t decarbonizing (yet), but renewables seem to be holding their own, at least in terms of percentages.

A thermal solar system, or SEGS, (solar energy generating system).

A thermal solar system, or SEGS, (solar energy generating system).

The result of all of the world’s fossil-fuel consumption is CO2 emissions, and this data is also included on the site. On the whole, another relatively flat graph. The world emitted about 20,000 mt of CO2 in 1990, and that number is about 30,000 mt today, but it isn’t increasing fast, and almost appears to be starting to level off. In the U.S., total CO2 emissions declined by 3.5% in 2012 (and CO2 from coal declined by over 12%). In fact, net CO2 emissions have declined in many industrialized countries, including Australia, Canada, and parts of Europe. While all is not rosy in this data as a whole, there’s no denying that these net declines are good news.

It is important to note that world population has increased steadily over the entire period that these graphs cover (world population was about 5.2 billion in 1990, and is almost 7.2 billion today). World population goes up by about a million people every 3 1/2 days, and has been this way for decades. (WorldMeter population ticker here.) So, when we place these energy graphs against the backdrop of a population that has grown by nearly 2 billion over the same time period, another positive trend is evident—relative decoupling. We’re still increasing damage to the planet, but we’re doing slightly better than we were, through efficiency and conservation. The Enerdata site graphs this, too, in a graph of “carbon intensity”—how much atmospheric CO2 we create for each unit of economic output. The news here is good—carbon intensity is falling steadily, and has been for decades. We are getting more efficient in how we use energy, and it shows. In more developed countries, carbon intensity has dropped by 40% since 1990. This is good news.

We’re not out of the woods, though. Our increased efficiency is a force in the right direction, but it is counteracted by two other forces—the demands of an ever-increasing population, and the demands of a world that is getting wealthier. Population is on track to begin to plateau, though it will be decades before it begins to level off appreciably. And millions being raised out of poverty (link to a good overview in The Economist) is a good thing, and hopefully this can be achieved for all of the people in the world. But this is why overall energy use continues to rise despite dramatic efficiency gains—it just takes more energy for ever more people to live more materially secure lives. We also aren’t out of the woods just yet because the human footprint is larger than some of these numbers show; recent studies have shown that when all impacts are taken into account, that we aren’t achieving as much as we might think we are in the way of decoupling. 

But, what the numbers do show, I think, is that we’re making some progress, even though we have a long way to go. And related to energy, which still largely comes from fossil fuel, recent information seems to suggest that perhaps the atmosphere isn’t quite as sensitive to CO2 as we thought, which might buy humankind a bit of time. There’s plenty of bad news out there, but with regard to that metaphorical asteroid, perhaps, just perhaps, it might not hit planet Earth. It’s going to be a close call, though. I’ll be checking back in with this Enerdata site next year, to keep watch on how we’re doing.

Image credit: tolotola / 123RF Stock Photo
Image credit: pancaketom / 123RF Stock Photo